
ference in the maximal values of the amplitude is not more than 3% (t = 120). It is seen 
from an analysis of the perturbation oscillogram obtained numerically that the amplitude be- 
hind the front oscillates relative to the mean value w = q,x/4h determined from (6). 

Graphs of the deflection computed for a local oscillating load are represented in Figs. 
5 and 6. The numerical results are in good agreement with the analytic results: for ~0 < 
1 the perturbation amplitude does not grow with time; for ~0 = i (Fig. 5a is the diagram for 
t = 90 and b is the oscillogram at the point x = 0) the perturbation envelope in the neighbor- 
hood of x = 0 increases in proportion to t3/4; for m0 > 1 (Fig. 6, m 0 = v~ the perturbations 
propagate with an amplitude oscillating relative to the mean value (dashed line) that is 
found from (7). 

Comparing the numerical and analytic solutions describing bending resonance wave propa- 
gation in a cylindrical shell and a rod on an elastic basis shows that the asymptotics ob- 
tained determine, with good accuracy, the fundamental perturbations in a system formed after 
a finite time interval. 

The authors are grateful to L. I. Slepyan for useful discussions. 
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CALCULATION OF STRAINS FOR BRITTLE MATERIALS 

TAKING INTO ACCOUNT LIMITING FAILURE 

A. V. Talonov and B. M. Tulinov UDC 539.375 

In order to describe the strain properties of heterogeneous materials there is currently 
extensive use of a model for an elastic material weakened by a large number of cracks [1-9]. 

The aim of the present work is to construct a system of fundamental equations for com- 
puting the strain properties of brittle materials based on development of a model for a 
cracked material suggested in [3, 4, 9] taking account of crack growth during deformation. 

i. We consider development of an isolated shear crack. Shear crack propagation in a 
plane arrangement was studied in [6-8] where it was noted that during loading in the end zones 
of a shear crack separation cracks occur growing in the general case along a curvilinear tra- 
jectory. 

Experiments [8] show that curvature of a growing separation crack occurs directly ad- 
jacent to the end zone of a shear crack. Subsequently, independent of the direction for the 
plane of a shear crack growth of a separation crack occurs in a plane perpendicular to the 
direction of least compressive stress. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 137-143, Hay-June, 1989. Original article submitted March 26, 1987; revision submitted 
January 29, 1988. 
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In contrast to [9], in the present work an individual crack is modeled by a three-com- 
ponent discontinuity consisting of a shear crack 2L long and two centrally symmetrical recti- 
linear separation cracks with initial length s (Fig. I). 

The macroscopic strain tensor for a cracked material in the method of indirect averaging 
of the field over the volume [2] is determined through the displacement in crack edges aver- 
aged for surfaces of a static assembly of discontinuities. Since local displacements along 
the discontinuity do not enter directly into the final result, then in order to simplify cal- 
culations with retention of all characteristic features of the solution for the original prob 
lem average displacements of the surface for a three-component crack are assumed to be repre- 
sented in the form of superposition of the average displacements of surfaces for two cracks 
(Fig. i). Continuity of displacements for the discontinuity edges at points of inflection 
provides conformity of boundary conditions in sections B and C. 

First we consider crack B in an unbounded elastic material with Young's modulus E a and 
Poisson's ratio v 0` At the center of this crack we place a coordinate system xOy so that 
axis Ox is directed along the discontinuity. The stressed state at infinity is assumed to 
be uniform, and principal stresses are oi~ and o22. For this stressed state crack orienta- 
tion is governed by angle 8 between the principal axis corresponding to o22 and axis Oy. We 
stay with the case of compressive stresses o=2 < o~ ~ 0. 

We assume that the crack edges react according to the Coulomb rule [3] 

�9 _ = ~ o §  (i.i) 

where ~ is friction coefficient, t0 is cohesion; o n is normal stress. The taking account 
of the continuity condition for displacements at points of inflection for the discontinuity 
displacements of the closed crack surface under the action of compressive stresses are found 
from the expressions 

vl(x, O) = wl(x, O) ~ u, v2(x, O) ~ O. (1 .2 )  

Here  u i s  d e t e r m i n e d  by  e d g e  d i s p l a c e m e n t  f o r  c r a c k  C ( F i g .  1 ) ,  a nd  w z i s  d e t e r m i n e d  f rom 
solution of the problem of a rectilinear section with reacting edges [i0]: 

Wl(X,O ) = ~ D  V L ~ - - x ~ + ,  D (~ +• 2nEo 

where 2L is length of crack B; T+ is effective shear stress characterizing the mutual dis- 
placement of closed crack edges and it equals ~+ = ITI - ~- with I~I > ~_; with I~I ~ ~_, 
the crack edge is in a cohesive condition and T+ = 0; • = (3 - ~0)/(i + ~0) for a general 
plane stressed state; • = 3 - 4~ 0 for plane strain. 

Now we consider a crack modeling separation cracks at the tips of a shear crack~ We 
select a coordinate system so that the original coincides with the center of the crack and 
the section lies along axis Ox I (Fig. 2). For this stressed state crack orientation is pre- 
scribed by angle ~ between the principal axis corresponding to 022 and axis Ox=. 

In order to calculate the effect of section B on separation crack C in a limiting condi- 
tion it is necessary to consider stresses arising at the surface of crack C with advance of 
the edges of section B. The nature of tensile stresses arising at the surface of crack C 
may only be established from the analysis of singular integral equations for the problem of 
a three-component discontinuity [6]. In order to simplify calculations in this work, the 
effect of a shear crack is considered approximately as in [8, ii] by introducing a concen- 
trated force into the boundary condition in section C. It is assumed that concentrated ten- 
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sile forces are proportional to effective shear stress x+ and they are directed along the 
surface of section C (Fig. 2, where 7 is the angle between shear and separation sections in 
a three-component crack). 

Model representation of tensile stresses in the form of concentrated forces leads to 
unbounded displacement in the vicinity of the applied force which is logarithmic in charac- 
ter [12]. However, as demonstrated with numerical modeling of a three-component discontinuity 
[6], crack edge displacements in the area of a break are finite. On the other hand, in the 
approach suggested in [2] the macroscopic strain tensor for a cracked material is expressed 
in terms of displacements averaged over the crack surface and the contribution of concentrated 
forces to material strain will be finite. 

Under the action of compressive stresses o11 and o22 the edges of a separation crack 
may join together smoothly and react in areas [-s -a] and [ a. s Boundaries of the region 
t-a, a] are governed by the equation K1(• = 0 [i0, 12] (K I is separation stress intensity 
factor). 

We consider the class of loading trajectory which, at the separation crack surface 
zones of edge of joining do not arise; it is of practical interest since, in fact, under these 
conditions crack growth occurs with loading. Then the boundary problem for a separation 
crack has the form 

u + (x~, o) = ,,T (x~, o) (I x~ 1/> z), u + ( x .  o) = ~d- ( x .  o) (I x~ I~> z), 
0"2~2 (Xl, O) = Q sin 2 7~ (xl) -- a I (] x 1 ] < l), o + (x 1, O) = 

--= Q sin ? cos ~ (xl) -{- r l  (I xl  I < l), 

a l  = I a n l  cos ~ -f- I ~ l  sin~a, Q = 2L-~., -q = ( a n  - -  (r22) sin a cos a ,  

(1.3) 

where ui • are displacements at the upper and lower edges of the discontinuity; 6(x) is the 
delta function. 

The distribution of displacements along axes Ox I and Ox 2 is determined according to [12] 
by the relationship 

l 

~ = ~+ - u :  = O [ ~ ( t ,  o )  V l ~ - t~ • 
-' (1.4) 

x 1 Xy dtdn (i = 1, 2, I x ~ l < / ) ,  
( t -  ~1) P'l~- ~ "~ 

--l 

by the use of which for boundary problem (1.3) we obtain the distribution of displacements 

along axes Ox I and Ox2: 

(2 b I u2=D L~+sin2yln Ill--x1-{- 1 / '7 -~  V-l.. x, ~ 
V l -  VT- Z - ~  

( n I Vl'Xl+ VT--'~l .-q"~) u1=D   § 

(1.s) 

Expressions for stress intensity factor for (1.3) characterizing the singular solution 
at points x I = •163 according to [12] have the form 

[2T+L 2 \ _.--12~+L ) g , :  V~ll[---~sin ~--al),  K2= V ~ / l ~ s [ n ~ c o s ~ + T 1  ( 1 . 6 )  

(K 2 is intensity factor for transverse shear). 

The limiting equilibrium condition of the crack tip in the general case is determined 
by the inequality [13] 

(K/K~) ~ + (K2/K2~) 2 < t ( 1 . 7 )  

(Klc and K2c are constants connected with material failure). 
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By summarizing results [14] for a complex type of loading and taking account of inequa- 
lity (1.7), in order to describe the change with time of crack size we use the relationship 

j 0, K < Kl~, 
v-=,lroq)(K ), K x ~ K <  K*, 

tv o, K ~ K*, 

(1.8) 

where K = JKI a + (KlcKm/K2c)2; vo is limiting crack growth rate; K* is failure threshold with 
the limiting velocity; ~(K) = A l exp (%K) for dry rocks and ~(K) = A2K n for impregnated ma- 
terials [15]; A I, A z, n, and % are material constants. 

By means of expression (1.6) conditions are found for formation of the contact region 
at the surface of a separation crack and its boundaries: 

[ Z, 

~l(Y 1 

"~+ < 2L sin2? "l 
(1.9) 

Relationships (1.5), (i.6), and (1.8) make it possible to work out separation crack ex- 
tension taking account of the possibilities of a change in its length with loading with ab- 
sence of a contact zone at the discontinuity surface determined by expression (1.9). As can 
be seen from (1.6), stress intensity factors decrease with an increase in separation crack 
length at constant load and in accordance with (1.8) cracks may move into a stable condition 
which agrees with the results in [6, 7]. 

2. We consider deformation of an elastic material weakened by identical isolated three- 
component discontinuities whose problem of edge displacement was solved in Sec. I. By means 
of the method in [2], the increase in macroscopic strain tensor in the suggested model is 
presented in the form 

~o , ~ f i f (miSWk + m~SWi)x 5eik = 6oih T (n iSUk+nh6U,)F(Y)dY+ 
(2.1) 9 

Here Sik ~ is strain tensor for a solid linearly elastic material; n i and m i are components 
of normal unit vectors to the surfaces of discontinuities B and C; U i and W i are vector com- 
ponents for the average jump in edge displacements for a closed and open crack; F(Y) is the crack 
distribution function for a collection of parameters for Y introduced in [2]. Crack sizes 
and their spatial orientation prescribed for a plane stressed state by angle a and u are taken 
as parameters of Y. 

it is assumed that crack density does not change during loading and the distribution 
function is known up to load f(L, &, a, ~). Then, considering that in the model in question 
separation cracks remain rectilinear during loading and the distribution function is written 
as 

F ( Y ) = ]  L , l +  v ( l , a ,? )d t ' , ? ,a  (2.2)  

[v is separation crack growth rate determined by relationship (1.8)]. Using (1.5) by carrying 
out averaging for the separation crack surface, the components of vector W i are presented 
in the form 

( L .2 ) ( L sin2' + ~1) (2.3)  W 2 = Dl 2 4~+-7-sm ? - -go1 ,  W 1 = Dl 2 2T+- T 

With averaging of vector components for the jump in displacements vi, according to ex- 
pression (1.2) it is necessary to carry out averaging of displacements at points of inflection 
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for the three-component discontinuity. The average displacement at points of inflection is 
assumed to be the limit 

U (0) = l im (i__ ~ (u~ (x~, 0) + u~ (x~, 0)s in  ?) dx~ z--.,o ~ 2z --z COS ~ ( 2 . 4 )  

On the basis of relationships (1.2), (1.5), and (2.4) we find the vector component for 
the average jump in displacements of the edges of crack B: 

U~ = DL  ~ ( ~ +  + 2X) n.,, U2 = DL ~ ( ~ +  + 2X) n,, 

1 (~r, cos ? - -  ~1 sin ?). IX = r,+ sin ? sin 2%, - -  -L- 
(2.5) 

As can be seen from (2.3) and (2.5) components of vectors for average jumps in displace- 
ments are limiting values. Substitution of relationships (2.2), (2.3), and (2.5) in Eq. (2.1) 
determines the strain tensor for a cracked material. Integration in (2.1) should be carried 
out within limits where mutual displacement of crack edges occurs, 71 ~ u ~ 72, characterized 
by relationship (i.i). In view of symmetry for the problem, sectors 0 ~ 7 ~ ~/2, 0 ~ ~ ~ ~/2 
are considered. 

Thus, the strain equation for a cracked material taking account of the development of 

cracking has the form 

" ~ �9 e ~ =  e~ + A i ~ t  + Bih~lg~l (2.6) 

[tensors Aijks and Bikjs are found from relationships (i.i), (1.6), (1.8), (2.1)-(2.3), and (2.5)]. 

Tensor components Bikjs obtained for the form of stressed state and initial crack dis- 
tribution f = (I/~)6(L - L0)5(s have the form 

~2 ~2 

• (V I + .~ sin (2~ - ~) + ~0 d~,, 
~2 ~2 

g2 

gt 
~e 

B, ,  n = - -  cos a ~ KCv sin 7 sin (~ - -  71 ( V' 1 + ~ sin (2? - 1~1 + I x) d~,, 
h 

~2 ~z y~ B 1 2 n = { s i n 2 o ~  C--Fd,~,-6- f KCvs in(~z- -?)cos(~z  + ?)X 

x (V" ~ + , -  s t .  (2v - ~) + ~) dr, 

y C  v I l l  KCv cos (~z + "f) sin (~z - -  ,') X B1222 = -~- sin 2a  T dy - -  - f  

h 
X(] / i + g' sin ( 2 ? -  [~) - -  ~) d?, 

K 5L~ = ---[--,. C -- --f DNI  ~, ~ = arctg it, 

(2.7) 

where ($i, $2) is the sector of crack growth determined by relationship (1.8); N is the crack 

concentration. 
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Tensor components Aikjs may be obtained from (i.i), (1.6), (1.8), (2.1)-(2.3), and (2.5), 
but in view of the cumbersome nature of expressions they are not provided. Relationships 
(2.3), (2.5), and (2.7) were found in an approximation of noninteracting cracks (NL 2 ~ i, 
Ns 2 << i). With consideration of cracking during loading, the question arises of the necessity 
for considering the reaction between cracks. With presence in the material of a set of main 
cracks their nonsteady-state reaction may markedly affect failure kinetics [16, 17] leading 
to stopping of some of the cracks and formation of crack-leaders. 

In considering materials weakened by cracks with similar parameters for which in the 
initial stages quasivolumetric failure is typical without the occurrence of clearly defined crack 
leaders, it is suggested that reaction between cracks up to the instant of multiple intersec- 
tion of cracks (Ns = - i) is considered approximately by means of effective elasticity moduli 
E and v. It is assumed that an isolated crack is in the material with elasticity moduli E 
and ~ governed by other cracks. By effective elasticity moduli for the stressed state in 
question we understand derivatives E = do22/dE22 and v = -ds11/de22. Within the limits of 
this approach the effect of material anisotropy on extension of isolated crack edges is as- 
sumed to be averaged. 

3. In order to compare the results obtained with experimental data, a calculation was 
carried out for strain curves for actual brittle materials with a complex stressed state used 
in order to study limiting material characteristics. 

In the theoretical model suggested with calculation of tensor components Aijks and Bikjs 
in Eq. (2.6) for actual brittle materials, three types of parameter are used: characterizing 
growth of an isolated crack K1c, K2c , K*, ~, v 0 and reaction of the edges p, To; elasticity 
moduli for a solid material E 0 and v0; initial cracking characteristics NL02 and L 0. 

Parameters of the first type are found from the results of independent experiments for 
studying the advance of edges for an isolated crack and its propagation in brittle materials. 
According to data in [15, 18] the following values for granite are found: T o = ~ ip = 0.68, 
K1c = 1.07 MPa-m I/2, K2c = 1.36 MPa-m I/2, K* = 2.15 MPa'm I/2, e = 6.7 (MPa'm I/2 i , and v 0 = 
740 m/sec. 

Parameters of the second type were determined by means of strain curves obtained for 
separate fixed loading regimes in the stage up to the start of material failure. With exis- 
tence of sufficient side pressure in a complex stressed state there is crack closing and from 
the slope of the linear sections of the strain curves E 0 and ~0 are found. For granite, 
E 0 = 65,000 MPa and ~0 = 0.18 were used in experiments [9]. 

Parameters of the third type were determined from experimental data for material axial 
compression. For s = 0, advance of the edges of closed cracks with uniaxial compression in 
accordance with (i.i) proceeds in the range of angles arctang ~ ~ ~ ~/2 and effective elas- 
ticity moduli remain constant up to the instant of the start of the development of cracking. 
The difference E - E 0 (E is Young's modulus for uniaxial compression) determines the initial 
stage of material cracking ~0 = NL02 

Deviation from a linear relationship in the case of uniaxial compression is connected 
with the start of crack growth. Therefore, the average initial crack size is found from the 
value of limit of proportionality for stresses by means of crack growth criterion (1.8). For 
granite, ~0 = 0.2, L 0 = 0.9 mm. 
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For a complex stressed state in calculating tensors Aikjs and Bikjs integration in ac- 
cordance with (2.1) was carried out for angles characterizing crack spatial orientation. 

Strain properties for granite in a complex stressed state were calculated by means of 
the parameters provided and Eq. (2.6). Presented in Fig. 3 are strain curves obtained with 
different values of side pressure (broken lines are the experiment [19]). In the approach 
developed a study was made of the dependence of limiting strength of granite in a complex 
stressed state on loading rate (Fig. 4). The good conformity of the results obtained with 
experimental data makes it possible to conclude that, in spite of simplifications, Eq. (2.6) 
may be used in order to describe the strain properties of brittle materials in a complex 
stressed state in the stage of crack growth. 
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